

Event-Triggered Distributed Model Predictive Control for Platoon Coordination at Hubs in a Transport System

Ting Bai, Alexander Johansson, Karl Henrik Johansson, and Jonas Mårtensson

Division of Decision and Control Systems

KTH Royal Institute of Technology, Stockholm, Sweden

What is Truck Platooning?

Trucks drive one after another on the road with small inter-truck distances.

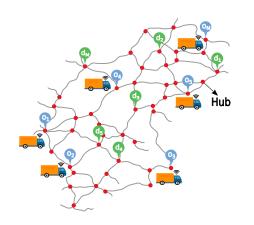
Benefits of Truck Platooning:

- 1) Save fuel
- 2) Reduce greenhouse gas exhaust
- Cut human labor cost (follower trucks can be autonomous)
- 4) Positive for safety

Trucks need coordination to form platoons

→ High-level platoon coordination

Large-Scale Platoon Coordination



Centralized platoon coordination methods are inapplicable

- 1. Endure a heavy computational burden;
- 2. Suffer from a multi-fleet nature of the problem;
- 3. Fail to handle external changes efficiently, such as delivery mission changes.

Problem Formulation

Can we set up a distributed framework for solving the platoon coordination problem?

Given:

the delivery task of every truck (including the origin, destination, route, travel time)

Problem:

when and where they should wait in order to maximize their own benefits from joining platoons.

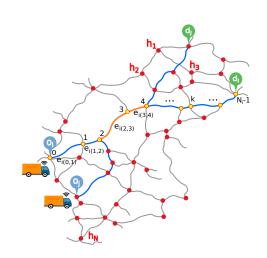
Our solution:

→ Distributed Model Predictive Control (DMPC)

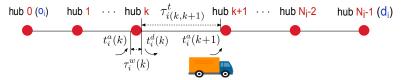
Network Description

The transport system is associated with $\mathcal{D}(\mathcal{H}, \mathcal{E})$:

$$\mathcal{H} = \{h_1, h_2, \dots, h_N\}, \quad \mathcal{E} = \bigcup_{i=1}^M \mathbf{e}_{(o_i, d_i)}.$$


The **route** of truck *i*:

$$\mathbf{e}_{(o_i,d_i)} = \{e_{i(0,1)}, e_{i(1,2)}, \dots, e_{i(N_i-2,N_i-1)}\}.$$


Common route segment:

$$e_{i(k,k+1)} = e_{i(k',k'+1)}$$

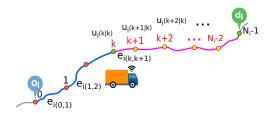
If
$$H_i(k) = H_j(k')$$
 and $H_i(k+1) = H_j(k'+1)$

Dynamical model:

For any truck i, its dynamics is of the form

$$t_i^a(k+1) = t_i^a(k) + \tau_i^w(k) + \tau_{i(k,k+1)}^t$$

 $t_i^a(k)$: the arrival time of truck i at its k-th hub; $\tau_i^w(k)$: the waiting time of truck i at its k-th hub; $\tau_{i(k,k+1)}^t$: the travel time on $e_{i(k,k+1)}$.


$$x_i(k+1) = x_i(k) + u_i(k) + c_{i(k,k+1)}$$

where $u_i \in \mathcal{U}_i = \{u_i : \underline{\tau}_i^w \le u_i \le \overline{\tau}_i^w\}.$

- ► Utility function:
- The predicted loss function

$$L_i(k) := \sum_{h=0}^{N_i-2-k} \epsilon_i u_i(k+h|k)$$

where ϵ_i is the monetary loss per time for waiting.

- The predicted reward function

Definition 1: (Potential partner set) → determined **OFFLINE**

 $\mathcal{P}_i(k) = \{j : j \text{ have a common route segment with } i\}.$

Definition 2: (*Predicted partner set*) → *optimized ONLINE*

 $\mathcal{R}_{i}(k+h|k) = \{j : j \text{ is predicted to departure from the } (k+h)\text{-th hub together with } i\}$ $= \{j : j \in \mathcal{P}_{i}(k+h) \land x_{i}(k+h|k) + u_{i}(k+h|k) = \hat{x}_{j}(H_{i}(k+h)) + \hat{u}_{j}(H_{i}(k+h))\}.$

The predicted reward function of truck *i* at its *k*-th hub is

$$R_{i}(k) := \sum_{h=0}^{N_{i}-2-k} \frac{\xi_{i} c_{i(k+h,k+h+1)}}{|\mathcal{R}_{i}(k+h|k)|} \frac{|\mathcal{R}_{i}(k+h|k)|}{|\mathcal{R}_{i}(k+h|k)|+1}$$

where ξ_i is the monetary platooning benefit per follower truck and travel time unit. The utility function of truck i at its k-th hub is

$$J_i(k) = R_i(k) - L_i(k).$$

The DMPC problem for platoon coordination:

$$\max_{\mathbf{u}_{i}(k)} J_{i}(k)$$
s. t. $x_{i}(k) = t_{i}^{a}(k)$

$$x_{i}(k+1|k) = x_{i}(k) + u_{i}(k) + c_{i(k,k+1)}$$

$$u_{i}(k+h|k) \in \mathcal{U}_{i}, \quad h \in [0:N_{i}-2-k]$$

$$x_{i}(N_{i}-1|k) - t_{i}^{end} \leq 0$$

Event-triggered control scheme:

The event-triggering condition

$$t_{sys} = x_i(k)$$
 and $k \neq N_i - 1$

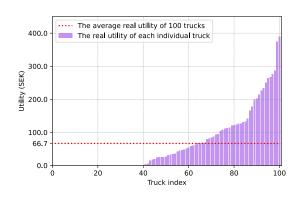
The optimization variable

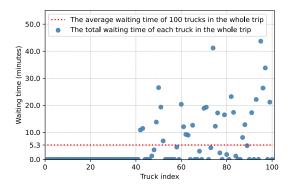
$$\mathbf{u}_{i}^{*}(k) = [\mathbf{u}_{i}^{*}(k), \mathbf{u}_{i}^{*}(k+1|k), \dots, \mathbf{u}_{i}^{*}(N_{i}-2|k)]$$

Algorithm 1: Event-triggered Distributed MPC for Platoon Coordination at Hubs

```
Input: \mathcal{D}(\mathcal{H}, \mathcal{E}), t_i^{start}, t_i^{end}, \tau_{i(k,k+1)}^t, \underline{\tau}_i^w, \bar{\tau}_i^w
     Output: u_i^*(k), \{\mathcal{R}_i^*(k+h|k)\}
 1 Initialization: \boldsymbol{u}_{i}^{*}(0) \leftarrow \boldsymbol{0}, obtain x_{i}(k), \hat{\boldsymbol{x}}_{-i}(H_{i}(k)),
    \hat{\boldsymbol{u}}_{-i}(H_i(k)), \mathcal{P}_i(k);
 2 S_d \leftarrow \emptyset;
 t_{sus} \leftarrow 0;
 4 while t_{sus} \neq \max_{i \in \mathcal{M}} \{t_i^{end}\} do
        t_{sys} \leftarrow t_{sys} + 1;
 6 S_d \leftarrow \{i \in \mathcal{M} : t_{sus} = x_i(k) \land k \neq N_i - 1\};
           for i \in \mathcal{S}_d do
                 solve truck i's distributed MPC problem
 8
                    (16):
                 update x_i^*(k+h|k), u_i^*(k+h|k) at future hubs;
 9
                 return u_i^*(k), \{\mathcal{R}_i^*(k+h|k)\}.
           end
12 end
```

Simulation over Swedish Road Network

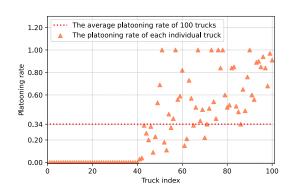


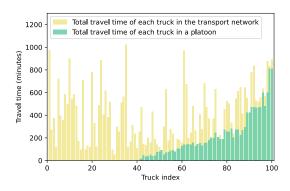

Parameter Settings:

- Consider 84 major hubs
- The OD pairs of trucks are randomly drawn from the hub-set
- The routes are obtained from *OpenStreetMap*
- Each truck starts its trip at a random time during 8:00-9:00
- The total maximal waiting time in the entire trip is 1 hour
- The maximal waiting time at a local hub is 30 minutes
- The fuel consumption of follower trucks is reduced by 10%
- The platooning benefit is $\xi_i = 57.6$ SEK per follower per hour
- The cost of waiting is $\epsilon_i = 45$ SEK per hour.

Simulation Results

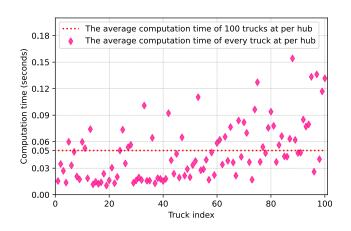
- The utilities and waiting times of individual trucks





Simulation Results

- The platooning rate


$$\mathbf{r}_i = \frac{\text{Total travel time of truck } i \text{ in a platoon}}{\text{Total travel time of truck } i \text{ in the network}}$$

Simulation Results

- Computational efficiency

Conclusions and Future Work

In this paper:

- ► An event-triggered DMPC approach was developed to address the hub-based platoon coordination in large-scale transport systems;
- ► A utility of individual trucks that captures the predicted reward from platooning and the predicted loss caused by waiting at hubs was presented;
- ► The performance of the proposed method was evaluated through a numerical example of one hundred trucks traveling in Swedish transport system.

Future work:

▶ Taking into account *stochastic travel times* in the platoon coordination

tingbai@kth.se