

Approximate Dynamic Programming for Platoon Coordination under Hours-of-Service Regulations

Ting Bai, joint work with

Alexander Johansson, Karl Henrik Johansson, and Jonas Mårtensson

Division of Decision and Control Systems

KTH Royal Institute of Technology, Stockholm, Sweden

Platooning technology

Trucks driving in a platoon

Platooning technology

Trucks driving in a platoon

Benefits:

- 1) Increase road capacity
- 2) Save fuel
- 3) Reduce greenhouse gas emissions
- 4) Cut labor cost
- 5) Alleviate driver shortage
- 6) Enhance driving safety, etc

Platoon coordination

Hub-based platoon formation

Platoon coordination

Hub-based platoon formation

	USA	EU	China	
Continuous driving time (max.)	8 h	4.5 h	4 h	
Mandatory rest time (min.)	30 min	45 min	20 min	
Daily driving time (max.)	11 h	9 h	10 h	

Hours-of-service (HoS) regulations

Platoon coordination

Hub-based platoon formation

	USA	EU	China	
Continuous driving time (max.)	8 h	4.5 h	4 h	
Mandatory rest time (min.)	30 min	45 min	20 min	
Daily driving time (max.)	11 h	9 h	10 h	

Hours-of-service (HoS) regulations

Our Problem: How to schedule trucks' waiting times at hubs to facilitate the formation of platoons while fulfilling the driving and rest time constraints?

System model

System model

• Truck dynamics:

$$a_i(k+1) = a_i(k) + \frac{w_i(k)}{w_i(k)} + \mathbf{1}_{\mathcal{H}_{i,r}}(k)t_r + \tau_i(k),$$

 $a_i(k)$: arrival time at the k-th hub; t_r : the mandatory rest time; $w_i(k)$: waiting time at the k-th hub; $\tau_i(k)$: travel time on the k-th road segment.

$$\mathbf{I}_{\mathcal{H}_{i,r}}(k) = egin{cases} 1 & ext{if} \quad k \in \mathcal{H}_{i,r}, \ 0 & ext{if} \quad k \notin \mathcal{H}_{i,r}. \end{cases}$$

Assumptions

- Maximum continuous driving time \overline{t}_d
- Maximum daily driving time T_d

Example: EU's HoS regulations

drivir	ng 😡	rest ⊢	driving ⊘	
4.5	4.5 h 45 min		45 min 4 h	
driving⊘	rest ⊢	driving⊘	rest 🛏	driving⊘
3.5 h	45 min	4 h	45 min	1.5 h

Two feasible driving and rest time plans

$$\bar{t}_d = 4.5$$
 h, $t_r = 45$ min, $T_d = 9$ h

Assumptions

- Maximum continuous driving time \overline{t}_d
- Maximum daily driving time T_d

Example: EU's HoS regulations

driving \bigotimes		rest ⊢	driving \otimes	
4.5	4.5 h 45 min		4 h	
driving⊘	rest ⊢	driving⊗	rest 🛏	driving⊘
3.5 h	45 min	4 h	45 min	1.5 h

Two feasible driving and rest time plans

$$\bar{t}_d = 4.5 \text{ h}, t_r = 45 \text{ min}, T_d = 9 \text{ h}$$

1) Travel time on each road segment: $\tau_i(k) \leq \bar{t}_d$

Assumptions

- Maximum continuous driving time \overline{t}_d
- Maximum daily driving time T_d

Example: EU's HoS regulations

driving \bigcirc		rest ⊢	t⊢ driving⊗	
4.5 h		45 min	4 h	
driving⊘	rest ⊢	driving⊗	rest 🛏	driving⊘
3.5 h	45 min	4 h	45 min	1.5 h

Two feasible driving and rest time plans

$$\bar{t}_d = 4.5$$
 h, $t_r = 45$ min, $T_d = 9$ h

- 1) Travel time on each road segment: $\tau_i(k) \leq \bar{t}_d$
- 2) Travel time in the whole trip: $\sum_{k=1}^{N_i-1} \tau_i(k) \leq T_d$

▶ Given the travel times \(\tau_i(k)\), \(k=1,...,N_i-1\) Determine offline the feasible rest hubs \(\mathcal{H}_{i,r}^f\)

▶ Given the travel times \(\tau_i(k)\), \(k=1,...,N_i-1\) Determine offline the feasible rest hubs \(\mathcal{H}_{i,r}^f\)

• Zero rest time: $\sum_{k=1}^{N_i-1} \tau_i(k) \leq \overline{t}_d \longrightarrow \mathcal{H}^f_{i,r} = \emptyset$

▶ Given the travel times \(\tau_i(k)\), \(k=1,...,N_i-1\) Determine offline the feasible rest hubs \(\mathcal{H}_{i,r}^f\)

- Zero rest time: $\sum_{k=1}^{N_i-1} \tau_i(k) \leq \overline{t}_d \longrightarrow \mathcal{H}_{i,r}^f = \emptyset$
- One rest time:

$$\sum_{k=1}^{\hat{k}-1} \tau_i(k) \leq \bar{t}_d, \text{ and } \sum_{k=\hat{k}}^{N_i-1} \tau_i(k) \leq \bar{t}_d \longrightarrow \{\hat{k}\} \in \mathcal{H}^f_{i,r}$$

▶ Given the travel times \(\tau_i(k)\), \(k=1,...,N_i-1\) Determine offline the feasible rest hubs \(\mathcal{H}_{i,r}^f\)

- Zero rest time: $\sum_{k=1}^{N_i-1} \tau_i(k) \leq \overline{t}_d \longrightarrow \mathcal{H}_{i,r}^f = \emptyset$
- One rest time:

$$\sum_{k=1}^{\hat{k}-1} \tau_i(k) \leq \bar{t}_d, \text{ and } \sum_{k=\hat{k}}^{N_i-1} \tau_i(k) \leq \bar{t}_d \longrightarrow \{\hat{k}\} \in \mathcal{H}_{i,i}^f$$

• Two rest times:

$$\sum_{k=1}^{\tilde{k}-1} \tau_i(k) \leq \bar{t}_d, \ \sum_{k=\tilde{k}}^{\hat{k}-1} \tau_i(k) \leq \bar{t}_d, \text{ and } \sum_{k=\hat{k}}^{N_i-1} \tau_i(k) \leq \bar{t}_d \longrightarrow \{\tilde{k}, \hat{k}\} \in \mathcal{H}^f_{i,r}$$

▶ Given the travel times \(\tau_i(k)\), \(k=1,...,N_i-1\) Determine offline the feasible rest hubs \(\mathcal{H}_{i,r}^f\)

- Zero rest time: $\sum_{k=1}^{N_i-1} \tau_i(k) \leq \overline{t}_d \longrightarrow \mathcal{H}_{i,r}^f = \emptyset$
- One rest time:

$$\sum_{k=1}^{\hat{k}-1} \tau_i(k) \leq \bar{t}_d, \text{ and } \sum_{k=\hat{k}}^{N_i-1} \tau_i(k) \leq \bar{t}_d \longrightarrow \{\hat{k}\} \in \mathcal{H}_{i,i}^f$$

• Two rest times:

$$\sum_{k=1}^{\tilde{k}-1} \tau_i(k) \leq \bar{t}_d, \quad \sum_{k=\tilde{k}}^{\hat{k}-1} \tau_i(k) \leq \bar{t}_d, \text{ and } \sum_{k=\hat{k}}^{N_i-1} \tau_i(k) \leq \bar{t}_d \longrightarrow \{\tilde{k}, \hat{k}\} \in \mathcal{H}_{i,r}^f$$

► Target: $\mathbf{w}_i^*(k) = [w_i^*(k|k), \dots, w_i^*(N_i - 1|k)]$ and $\mathcal{H}_{i,r}^* \in \mathcal{H}_{i,r}^f$

▶ Target: $\mathbf{w}_i^*(k) = [w_i^*(k|k), \dots, w_i^*(N_i-1|k)]$ and $\mathcal{H}_{i,r}^* \in \mathcal{H}_{i,r}^f$

 \rightarrow Predicted departure time of truck *i*: $a_i(k+h|k) + w_i(k+h|k) + \mathbf{1}_{\mathcal{H}_{i,r}(k)}(k+h)t_r$

▶ Target: $\mathbf{w}_i^*(k) = [w_i^*(k|k), \dots, w_i^*(N_i-1|k)]$ and $\mathcal{H}_{i,r}^* \in \mathcal{H}_{i,r}^f$

 \rightarrow Predicted departure time of truck *i*: $a_i(k+h|k) + w_i(k+h|k) + \mathbf{1}_{\mathcal{H}_{i,r}(k)}(k+h)t_r$

• Predicted platooning reward: $R_i(k) = \sum_{h=0}^{N_i-1-k} \xi_i \tau_i(k+h) \frac{n_i(k+h|k)}{n_i(k+h|k)+1}$

▶ Target: $\mathbf{w}_i^*(k) = [w_i^*(k|k), \dots, w_i^*(N_i-1|k)]$ and $\mathcal{H}_{i,r}^* \in \mathcal{H}_{i,r}^f$

 \rightarrow Predicted departure time of truck *i*: $a_i(k+h|k) + w_i(k+h|k) + \mathbf{1}_{\mathcal{H}_{i,r}(k)}(k+h)t_r$

- Predicted platooning reward:
- Predicted waiting loss:

Optimization problem (solved by dynamic programming):

 $\max_{\mathbf{w}_{i}(k),\mathcal{H}_{i,r}(k)\in\tilde{\mathcal{H}}_{i,r}^{f}(k)} J_{i}(k) = R_{i}(k) - L_{i}(k)$ s. t. $a_{i}(k|k) = t_{i,arr}(k)$ $a_{i}(k+h+1|k) = a_{i}(k+h|k) + w_{i}(k+h|k) + \mathbf{1}_{\mathcal{H}_{i,r}(k)}(k+h)t_{r} + \tau_{i}(k+h),$ $h = 0, \dots, N_{i} - 1 - k$ $a_{i}(N_{i}|k) \leq t_{i,end}$

61th IEEE CDC. Cancún, Mexico, December 6-9, 2022

The Swedish road network

- 105 hubs, 1000 trucks, EU's HoS regulations
- OD pair distribution from **SAMGODS**
- Routes from OpenStreetMap
- Trips start between 08:00-10:00
- Waiting budget is 5% of the total travel time
- Fuel consumption of follower trucks reduced by 10%
- Platooning benefit is 5.5€ per follower per hour
- Waiting loss is 25€ per hour

- Feasible rest hubs

	Zero rest time	One rest time	Two rest times	
Nr. of trucks	706	250	44	
Size of $\mathcal{H}^{f}_{i,r}$	0	=1 >1	=1 >1	
Nr. of trucks	706	113 137	2 42	

The number of rest times required for trucks

- Continuous driving time of each truck

 ${\bf Zero}$ rest time

- Continuous driving time of each truck

One rest time

- Continuous driving time of each truck

- Platooning rate and utility

Platooning rate of truck $i = \frac{\text{Truck } i\text{'s travel time in platoons}}{\text{Truck } i\text{'s travel in the road network}}$

- Platooning rate and utility

Platooning rate of truck $i = \frac{\text{Truck } i\text{'s travel time in platoons}}{\text{Truck } i\text{'s travel in the road network}}$

800

1000

Conclusions

- A platoon coordination method is developed considering HoS regulations
- An approximate DP solution is presented where trucks' decision-makings are decoupled
- ► A large-scale simulation is conducted over the Swedish road network
 - Considerable platooning profits can be achieved under today's HoS regulations
 - Waiting budget plays an important role for achieving a high platooning profit

Conclusions

- A platoon coordination method is developed considering HoS regulations
- An approximate DP solution is presented where trucks' decision-makings are decoupled
- ► A large-scale simulation is conducted over the Swedish road network
 - Considerable platooning profits can be achieved under today's HoS regulations
 - Waiting budget plays an important role for achieving a high platooning profit

Future work:

- Extend this work to capture less restrictive rest time constraints (30 min plus 15 min)
- Consider platoon coordination for electric trucks including HoS regulations