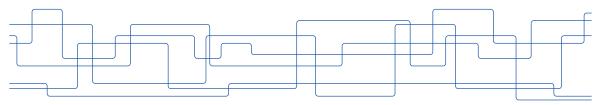


Rollout-Based Charging Strategy for Electric Trucks with Hours-of-Service Regulations

Ting Bai, Postdoctoral Researcher

Division of Decision and Control Systems

KTH Royal Institute of Technology, Stockholm, Sweden



Collaborators

Dr. Yuchao Li

Prof. Karl Henrik Johansson

Prof. Jonas Mårtensson

Road Freight Electrification

Charging of heavy, electric truck

Road Freight Electrification

Charging of heavy, electric truck

Positive impacts:

- 1) Reduce air and noise pollution
- 2) Mitigate climate change
- 3) Cope with energy shortages
- 4) Save operational cost
- 5) Lead to sustainable transport
- 6) ...

► Insufficient battery – Range anxiety

Limited driving range (200-600 km)

- ► Insufficient battery Range anxiety
- Drivers need to follow HoS regulations

Limited driving range (200-600 km)

	USA	EU	China
Continuous driving time (max.)	8 h	4.5 h	4 h
Mandatory rest time min.)	30 min	45 min	20 min
Daily driving time max.)	11 h	9 h	10 h

Hours-of-service (HoS) regulations

- ► Insufficient battery Range anxiety
- Drivers need to follow HoS regulations

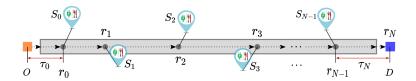
Limited driving range (200-600 km)

	USA	EU	China	
Continuous driving time (max.)	8 h	4.5 h	4 h	
Mandatory rest time (min.)	30 min	45 min	20 min	
Daily driving time (max.)	11 h	9 h	10 h	

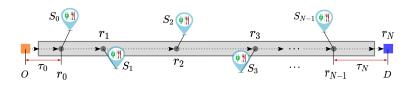
Hours-of-service (HoS) regulations

Problem: How to design reliable and efficient **charging strategies** for electric trucks to complete delivery missions on time while aligning with the HoS regulations?

Route Model



Route Model



Decision variables:

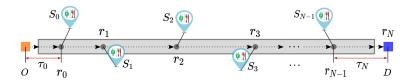
$$b_k, \tilde{b}_k \in \{0, 1\}, \quad t_k \in \Re_+$$

 b_k : whether to charge at the station S_k

 \tilde{b}_k : whether to rest at S_k

 t_k : how long to charge the truck at S_k if $b_k = 1$

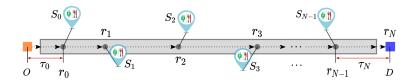
Dynamics



▶ The **remaining battery** upon arriving at r_{k+1} :

$$e_{k+1} = e_k + \frac{b_k \Delta e_k}{b_k \Delta e_k} - \bar{P}\left(2(b_k \vee \tilde{b}_k)d_k + \tau_{k+1}\right)$$

Dynamics

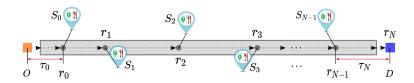


▶ The **remaining battery** upon arriving at r_{k+1} :

$$e_{k+1} = e_k + \frac{b_k \Delta e_k}{b_k \Delta e_k} - \bar{P}\Big(2(b_k \vee \tilde{b}_k)d_k + \tau_{k+1}\Big)$$

 $\Delta e_k = t_k \min\{P_k, P_{\mathsf{max}}\} \leq \mathsf{battery\ capacity}$

Dynamics



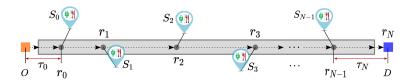
▶ The **remaining battery** upon arriving at r_{k+1} :

$$e_{k+1} = e_k + \frac{b_k \Delta e_k}{b_k \Delta e_k} - \bar{P}\Big(2(b_k \vee \tilde{b}_k)d_k + \tau_{k+1}\Big)$$

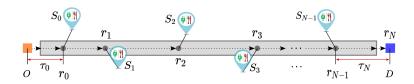
 $\Delta e_k = t_k \min\{P_k, P_{\max}\} \leq \text{battery capacity}$

▶ The consecutive driving time at r_{k+1} :

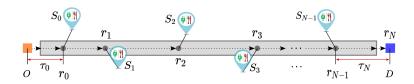
$$c_{k+1} = \tau_{k+1} + (b_k \vee \tilde{b}_k)d_k + (1 - \tilde{b}_k)(c_k + b_k d_k)$$



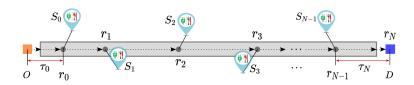
▶ Sufficient energy to reach S_k : $e_k \ge$ battery for safe operation $+\bar{P}d_k$



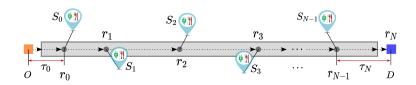
- ▶ Sufficient energy to reach S_k : $e_k \ge$ battery for safe operation $+\bar{P}d_k$
- ► HoS regulations:



- ▶ Sufficient energy to reach S_k : $e_k \ge$ battery for safe operation $+\bar{P}d_k$
- HoS regulations:
 - $c_k + d_k \le$ the maximum consecutive driving time



- lacksquare Sufficient energy to reach S_k : $e_k \geq$ battery for safe operation $+ar{P}d_k$
- HoS regulations:
 - $c_k + d_k \le$ the maximum consecutive driving time
 - $\sum_{k=0}^{N} au_k + \sum_{k=0}^{N-1} 2(b_k \lor \tilde{b}_k) d_k \le$ the maximum daily driving time



- ▶ Sufficient energy to reach S_k : $e_k \ge$ battery for safe operation $+\bar{P}d_k$
- ► HoS regulations:
 - $c_k + d_k \le$ the maximum consecutive driving time
 - $\sum_{k=0}^{N} \tau_k + \sum_{k=0}^{N-1} 2(b_k \vee \tilde{b}_k) d_k \leq$ the maximum daily driving time
- Delivery deadline:

$$\sum_{k=0}^{N-1} \max \left\{ \frac{b_k (2d_k + p_k + t_k)}{b_k (2d_k + T_r)} \right\} \leq \Delta T$$

$$\begin{aligned} & \min_{\{(b_k, \tilde{b}_k, t_k)\}_{k=0}^{N-1}} & F(b_0, \tilde{b}_0, t_0, \dots, b_{N-1}, \tilde{b}_{N-1}, t_{N-1}) \\ & = \sum_{k=0}^{N-1} \xi_k b_k t_k + \sum_{k=0}^{N-1} \max \left\{ b_k (2d_k + p_k + t_k), \tilde{b}_k (2d_k + T_r) \right\} \epsilon \end{aligned}$$

s. t. dynamics and constraints introduced earlier

¹D.Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, vol. 6. Belmont, MA, USA: Athena Sci., 1997.

$$\begin{aligned} & \min_{\{(b_k, \tilde{b}_k, t_k)\}_{k=0}^{N-1}} & F\left(b_0, \tilde{b}_0, t_0, \dots, b_{N-1}, \tilde{b}_{N-1}, t_{N-1}\right) \\ & = \sum_{k=0}^{N-1} \xi_k b_k t_k + \sum_{k=0}^{N-1} \max\left\{b_k (2d_k + p_k + t_k), \tilde{b}_k (2d_k + T_r)\right\} \epsilon \end{aligned}$$

s. t. dynamics and constraints introduced earlier

Challenge: the problem is a Mixed Integer Program with bilinear constraints

62th IEEE CDC. Marina Bay Sands, Singapore, Dec. 13-15, 2023

¹D.Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, vol. 6. Belmont, MA, USA: Athena Sci., 1997.

$$\begin{aligned} & \min_{\{(b_k, \tilde{b}_k, t_k)\}_{k=0}^{N-1}} & F(b_0, \tilde{b}_0, t_0, \dots, b_{N-1}, \tilde{b}_{N-1}, t_{N-1}) \\ & = \sum_{k=0}^{N-1} \xi_k b_k t_k + \sum_{k=0}^{N-1} \max \left\{ b_k (2d_k + p_k + t_k), \tilde{b}_k (2d_k + T_r) \right\} \epsilon \end{aligned}$$

s. t. dynamics and constraints introduced earlier

- Challenge: the problem is a Mixed Integer Program with bilinear constraints
 - It cannot be directly solved by many standard solvers

62th IEEE CDC. Marina Bay Sands, Singapore, Dec. 13-15, 2023

¹D.Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, vol. 6. Belmont, MA, USA: Athena Sci., 1997.

$$\begin{aligned} & \min_{\{(b_k,\tilde{b}_k,t_k)\}_{k=0}^{N-1}} & F\left(b_0,\tilde{b}_0,t_0,\dots,b_{N-1},\tilde{b}_{N-1},t_{N-1}\right) \\ & = \sum_{k=0}^{N-1} \xi_k b_k t_k + \sum_{k=0}^{N-1} \max\left\{b_k (2d_k + p_k + t_k),\tilde{b}_k (2d_k + T_r)\right\} \epsilon \end{aligned}$$

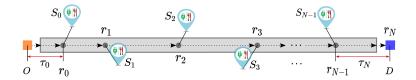
- s. t. dynamics and constraints introduced earlier
- Challenge: the problem is a Mixed Integer Program with bilinear constraints
 - It cannot be directly solved by many standard solvers
 - \bullet Exact solutions: iterate over all possible combinations of integer variables $\to 4^{\it N}$ continuous optimization problems

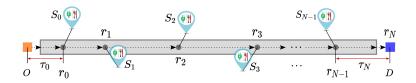
¹D.Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, vol. 6. Belmont, MA, USA: Athena Sci., 1997.

$$\begin{split} \min_{\{(b_k,\tilde{b}_k,t_k)\}_{k=0}^{N-1}} & F\left(b_0,\tilde{b}_0,t_0,\dots,b_{N-1},\tilde{b}_{N-1},t_{N-1}\right) \\ & = \sum_{k=0}^{N-1} \xi_k b_k t_k + \sum_{k=0}^{N-1} \max\left\{b_k (2d_k + p_k + t_k),\tilde{b}_k (2d_k + T_r)\right\} \epsilon \end{split}$$

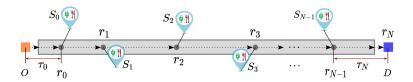
- s. t. dynamics and constraints introduced earlier
- ▶ Challenge: the problem is a Mixed Integer Program with bilinear constraints
 - It cannot be directly solved by many standard solvers
 - \bullet Exact solutions: iterate over all possible combinations of integer variables $\to 4^N$ continuous optimization problems
 - Linear transformation: it may still require an exponential number of iterations [see, p.480]¹

¹D.Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, vol. 6. Belmont, MA, USA: Athena Sci., 1997.

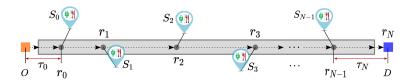




- Two base solutions:
 - Greedy solution: set $(b_k, \tilde{b}_k) = (1, 1)$ if the remaining energy is insufficient to reach S_{k+1}



- Two base solutions:
 - Greedy solution: set $(b_k, \tilde{b}_k) = (1, 1)$ if the remaining energy is insufficient to reach S_{k+1}
 - **Relaxed solution**: solve a relaxation of the original problem with $b_k, \, \tilde{b}_k \! \in \! [0,1]$



- Two base solutions:
 - Greedy solution: set $(b_k, \tilde{b}_k) = (1, 1)$ if the remaining energy is insufficient to reach S_{k+1}
 - **Relaxed solution**: solve a relaxation of the original problem with $b_k,\, \tilde{b}_k \!\in\! [0,1]$
- ▶ Complexity: it requires solving at most 4N continuous optimization problems

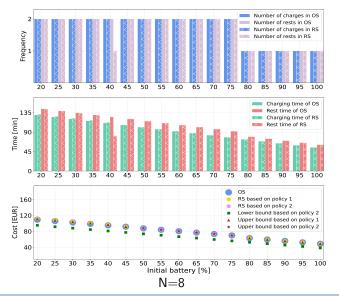
The route of one truck.

The route of one truck.

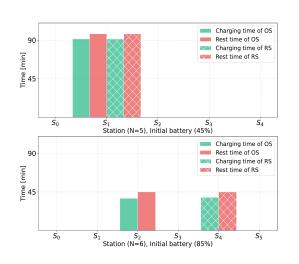
- ► Routes are obtained via *OpenStreetMap*
- ▶ Data for electric trucks manufactured by Scania
 - $P_k = 300 \text{ kW}$
 - $P_{\text{max}} = 375 \text{ kW}$
 - $e_f = 468 \text{ kWh}$
 - $\bar{P} = 1.83 \text{ kWh/min}$
 - $p_k = 6 \text{ min}$
 - $\xi_k = 0.36 \in /\text{kWh}, \epsilon_k = 0.4 \in /\text{min}$
- EU's HoS regulations

▶ 6 scenarios (*N* is between 5 and 10, initial battery is between 20% and 100%)

▶ 6 scenarios (N is between 5 and 10, initial battery is between 20% and 100%)



► Comparison between the optimal solution (OS) and rollout solution (RS).



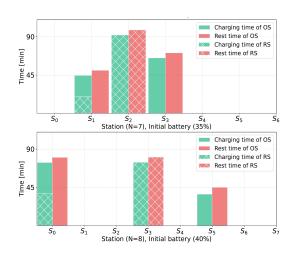


Table: Comparison between the OS and RS

N	5	6	7	8	9	10
Average optimality gap-RS [%]	0	0.55	0.72	0.49	0.03	0.42
Average optimality gap-UB [%]	1.04	5.46	2.23	0.48	4.28	1.72
Average computation time of RS [s]	0.34	0.42	0.57	0.65	0.84	1.43
Average computation time of OS [min]	0.32	1.34	5.45	24.02	98.50	413.68

► The optimality gap between the RS and OS:

$$\frac{(F(RS) - F(OS)) \times 100}{F(OS)}$$

▶ We formulate the optimal charging problem of electric trucks as a mixed-integer program

- ▶ We formulate the optimal charging problem of electric trucks as a mixed-integer program
- A rollout-based charging strategy is proposed, which provides near-optimal solutions

- ▶ We formulate the optimal charging problem of electric trucks as a mixed-integer program
- ► A rollout-based charging strategy is proposed, which provides near-optimal solutions
 - It allows for handling the HoS regulations, subject to delivery deadlines

- ▶ We formulate the optimal charging problem of electric trucks as a mixed-integer program
- A rollout-based charging strategy is proposed, which provides near-optimal solutions
 - It allows for handling the HoS regulations, subject to delivery deadlines
 - It is of high efficiency and is promising to be applied to real-time strategy planning

- ▶ We formulate the optimal charging problem of electric trucks as a mixed-integer program
- A rollout-based charging strategy is proposed, which provides near-optimal solutions
 - It allows for handling the HoS regulations, subject to delivery deadlines
 - It is of high efficiency and is promising to be applied to real-time strategy planning
- Extensive simulation studies illustrate the effectiveness of the developed approach

- ▶ We formulate the optimal charging problem of electric trucks as a mixed-integer program
- A rollout-based charging strategy is proposed, which provides near-optimal solutions
 - It allows for handling the HoS regulations, subject to delivery deadlines
 - It is of high efficiency and is promising to be applied to real-time strategy planning
- Extensive simulation studies illustrate the effectiveness of the developed approach

Future work:

▶ Developing optimal charging strategies with limited charging resources at stations

