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A B S T R A C T

Liver cancer is one of the leading causes of cancer-related deaths worldwide. Automatic liver and tumor
segmentation are of great value in clinical practice as they can reduce surgeons’ workload and increase the
probability of success in surgery. Liver and tumor segmentation is a challenging task because of the different
sizes, shapes, blurred boundaries of livers and lesions, and low-intensity contrast between organs within
patients. To address the problem of fuzzy livers and small tumors, we propose a novel Residual Multi-scale
Attention U-Net (RMAU-Net) for liver and tumor segmentation by introducing two modules, i.e., Res-SE-Block
and MAB. The Res-SE-Block can mitigate the problem of gradient disappearance by residual connection and
enhance the quality of representations by explicitly modeling the interdependencies and feature recalibration
between the channels of features. The MAB can exploit rich multi-scale feature information and capture inter-
channel and inter-spatial relationships of features simultaneously. In addition, a hybrid loss function, that
combines focal loss and dice loss, is designed to improve segmentation accuracy and speed up convergence.
We evaluated the proposed method on two publicly available datasets, i.e., LiTS and 3D-IRCADb. Our proposed
method achieved better performance than the other state-of-the-art methods, with dice scores of 0.9552 and
0.9697 for LiTS and 3D-IRCABb liver segmentation, and dice scores of 0.7616 and 0.8307 for LiTS and
3D-IRCABb liver tumor segmentation.
1. Introduction

The liver is one of the most important organs in the human body
due to its detoxifying and digestive functions [1]. As the fourth-highest
death rate of all malignancies [2], liver cancer has become a serious
hazard to human health. Computer tomography (CT) is one of the
most common imaging modalities, and is typically used by radiologists
and oncologists to evaluate and analyze liver and lesions. Radiolo-
gists and oncologists can find areas of the lesion and thus develop
a diagnosis and treatment plan by analyzing computed tomography
(CT) or magnetic resonance images (MRI). Currently, most of the
segmentation of the liver and tumor is performed manually, which
is labor-intensive, time-consuming, and depends on the experience
of the surgeons. Computer-assisted liver and tumor segmentation can
reduce the surgeon’s workload and can increase the success rate of
surgery, which is of great clinical value. However, the shape, location,
and volume of livers and tumors vary from patients to patients, the
boundaries between lesions and surrounding normal liver tissues are
blurred, and differences in imaging equipment and settings can lead to
significant differences in tumor color and contrast, making automated
computer-assisted liver and tumor segmentation a challenging study.
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Researchers have explored some traditional methods [3–5] for
biomedical image segmentation tasks. Traditional methods are sig-
nificantly more efficient compared to manual segmentation methods.
Traditional methods, including region growing [6], level-set [7] and
edge-based [8] method. However, traditional methods require the man-
ual design of features and the manual setting of important parameters.
Deep learning methods have superiority in weight learning and model
generalization without the manual design of features and setting of
parameters. With the development of GPU hardware and the open-
source availability of large amounts of medical datasets, deep-learning
methods can perform even better in liver and tumor segmentation tasks.

Convolutional neural networks (CNN) have achieved great success
in the field of computer vision over the last few years [9]. In the
field of image semantic segmentation, a new type of convolutional
neural network, the fully convolution network (FCN) [10], has been
proposed with the advantage that the input and output images of the
network are of the same size and that the input images are all full
image of arbitrary resolution. FCN has rapidly gained attention for
its outstanding advantages in feature extraction. Compared to natural
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Fig. 1. The architecture of RMAU-Net. RMAU-Net mainly consists of Res-SE-Block, MAB, max-pooling, upsampling and skip connections. The network receives input from CT slices
of size (256 × 256 × 1) and directly outputs the mask with the same size. The numbers under the module represent the numbers of channels of feature maps.
image segmentation, the accuracy of medical image segmentation is
often affected by factors such as different sizes, shapes, and locations
of lesioned regions and the low-intensity contrast between organs
within the patient. In addition, accurate segmentation is regarded
as an extremely complex task due to the blurred boundaries of the
lesions. Consequently, some deep learning methods for medical image
segmentation have been developed to overcome the aforementioned
factors. U-Net [11] is one of the most widely used encoder–decoder
networks in the field of medical image segmentation. U-Net employs
skip connections from the lower to the higher layer to exploit multi-
scale feature information and make up for information lost through
down-sampling. The addition of skip connections significantly improves
the utilization of information and the accuracy of segmentation. In-
spired by U-Net, a number of variants based on the U-Net have been
developed, including Attention U-Net [12], 3D U-Net [13], and U-
Net++ [14]. Attention U-Net presents an attention mechanism that
focuses on the goal and suppresses background features and eliminates
irrelevant information and noise by inserting the attention module
before the splicing of encoder and decoder features. To recover 3D
information, 3D U-Net converts all 3D convolution operations in U-Net
to 3D convolution operations. As stated in [9,15], 3D methods include
a more complicated network in comparison with 2D methods, result-
ing in a higher computation load and lower computation efficiency.
Therefore, it is practical to apply 2D segmentation methods in scenarios
where the computation resource is limited and a high computation
efficiency is required U-Net++, which is based on improved U-Net,
enhances performance by combining four structures of different depths
and dense skip connections of different lengths. In addition, novel
skip connections, such as residual connection [16] and dense connec-
tion [17], have been introduced to the network architecture. While the
variances of the proposed skip connections are helpful to capture the
rich semantic feature information of different levels and reduce the
semantic gap, it fails to describe the channel-wise dependencies and
spatial-wise relationships between the pixels of images that are crucial
for medical image segmentation.

Conventional CNNs perform poorly in global information modeling
and multi-scale feature extraction. In liver and tumor segmentation
tasks, the lesions have various sizes, shapes, locations, and numbers
between patients, and even the same patient, which can cause a signif-
icant challenge to automatic segmentation. In addition, edge segmen-
tation is usually performed unsatisfactorily because of the lack of clear
boundaries of some lesions, combined with severe noise. To capture
multi-scale features in the network, some state-of-the-art methods [18–
20] introduce atrous convolutions and pooling operations with different
sampling rates. But, the pooling operations and atrous convolutions
2

are unable to take advantage of the channel-wise and spatial-wise de-
pendencies in the global information. Additionally, pooling operations
induce to loss of detailed information on the feature map.

To deal with the above issues, we provide Redial Multi-scale At-
tention U-Net (RMAU-Net) for liver and tumor segmentation, as seen
in Fig. 1. The RMAU-Net includes two main modules, Res-SE-Block
and Multi-scale Attention Block (MAB). The Res-SE-Block instead of
the origin two convolution layer is used to mitigate the problem of
gradient disappearance by residual connection and enhance the quality
of representations by squeeze-and-excitation operations. The MAB can
capture both multi-scale feature information and channel-wise and
spatial-wise dependencies. In addition, we design a hybrid loss function
that combined Focal loss and dice loss to solve the imbalance of class
and poor segmentation of difficult samples.

In summary, this study makes the following contributions.

• We propose a new network architecture named RMAU-Net to
augment the ability of feature representation and improve per-
formance on liver and tumor segmentation tasks.

• We develop a multi-scale attention mechanism, which can exploit
global spatial information and channel dependencies and solve
the multi-scale problem efficiently and effectively.

• We redesign a novel hybrid loss function based on a combination
of dice loss and focal loss in order to solve the imbalance of class
and poor segmentation of difficult samples.

The remainder of the paper is organized as follows. Section 2
describes the previous research and related work. Section 3 discusses
the proposed method in detail. Section 4 describes the experiment, and
Section 5 analyzes the results. Finally, Section 6 provides conclusions
of this study.

2. Related work

2.1. Liver and tumor segmentation

In recent years, many researchers have proposed many approaches
based on convolutional neural networks for liver and tumor segmen-
tation. These approaches are mainly classified as 2D networks and
3D networks. Sun et al. [21] proposed a multi-channel fully convo-
lutional network (MC-FCNs), which is used to automatically segment
liver and tumors in CT scans. The MC-FCNs has three channels, which
can be trained separately and independently for different stages of
CT images, and feature fusion is performed at the higher levels of
the network. In order to obtain multi-scale feature maps for live and
tumor segmentation, Song et al. [22] proposed a bottleneck supervised
U-Net (BS U-Net) with convolutional kernels of different sizes. The
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BS U-Net adds a dense module, an inception module, and a dilated
convolution to the encoder of the network based on the original U-Net.
Liu et al. [23] proposed a GIU-Net that integrates the graph cut method
to the improved U-Net. Kaur et al. [24] proposed a GA-UNet for 2D and
3D image segmentation, respectively. To improve the resolution of the
output image, the 3D GA-UNet eliminates the effect of the network’s
shrinkage path on resolution through successive layers and replaces
the pooling operation with an upsampling operation. Jin et al. [25]
proposed an RA-UNet for liver and tumor segmentation, replacing the
convolutional blocks of the traditional U-Net with residual blocks, and
proposing an attention mechanism and using it to combine low-level
feature maps with high-level feature maps to extract contextual infor-
mation by skip connections. Gao et al. [26] proposed an ASU-Net++ to
improve gradient flow and feature retention by integrating dense skip
connections. In addition, ASU-Net++ based U-Net++ modified the orig-
inal Atrous Spatial Pyramidal Pooling (ASPP) to an adaptive pooling
structure for better performance and compatibility. Zhang et al. [27]
proposed the Scale Attention mechanism, which is effective for multi-
scale problems in liver and tumor segmentation. Kushnure et al. [15]
proposed HFRU-Net which modifies skip connections by using a feature
fusion mechanism and local feature reconstruction.

2.2. Multi-scale feature extraction

In the past few years, many approaches [28–35] have been pro-
posed to enhance context aggregation by applying multi-scale feature
information of images due to that multi-scale feature information can
provide rich semantic features for medical image segmentation. We
review several approaches about multi-scale feature extraction.

It is well known that FPN [28] was the first work to address
the problem of multi-scale feature extraction. Many studies explored
multi-scale feature extraction in the field of biomedical image seg-
mentation, such as CE-Net [29], U-Net++ [30], MDAN-UNet [31] and
MS-UNet [32]. Gu et al. [29] designed a pooling strategy with pool ker-
nels of different sizes for medical image segmentation. Zhou et al. [30]
proposed a network called U-Net++, which applies dense and nested
skip connections to connect encoders and decoders before fusing them
with the corresponding semantic from different layers of the encoder
network progressively enriched before fusing with rich multi-scale
feature mappings. Liu et al. [31] proposed an improved nested U-Net
(MDAN-UNet) for the automatic segmentation of OCT images, which
takes advantage of a dual attention mechanism, and multi-scale feature
extraction. Kushnure et al. [32] introduced the MS-UNet which utilized
the multi-scale approach to improve the receptive field of CNN and
extract global and local features. Huang et al. [33] developed a novel
variant of U-Net named Unet3+ that utilizes deep supervision and full
skip connections for organ segmentation. Khan et al. [35] presented
the RMS-Unet with a multi-scale approach, which has been utilized to
explore novel inter-slice features with multi-channel input images.

2.3. Attention mechanism

Attention mechanisms are inspired by the biological systems of
humans that tend to focus on the area of interest when processing large
amounts of information. At the same time, attention mechanisms can
capture long-range dependencies. Attention mechanisms were first ap-
plied to natural language processing tasks. [36] is regarded as the first
work to use attention mechanisms to capture the global dependence of
inputs. In recent years, attention mechanisms have been widely used
in computer vision tasks, as researchers have discovered that attention
mechanisms also perform well in computer vision tasks. There are
various attention mechanisms have been proposed for computer vision
tasks. Hu et al. [37] firstly presented the concept of channel attention
that focus on the channel dependencies between feature maps, and
proposed a novel architecture unit named Squeeze-and-Excitation block
(SE) that can adaptively recalibrate channel dependencies responses
3

of feature maps by explicitly modeling the interdependencies between
channels. Woo et al. [38] proposed a novel attention module (CBAM)
in convolutional neural networks, which can calculate the attention
graph sequentially along channel-wise and spatial-wise. Meanwhile,
Park et al. [39] proposed the bottleneck attention module (BAM) that
can be integrated with a convolutional neural network that can infer
the attention graph along two different paths, channel, and space. Both
CBAM [38] and BAM [39] use convolutional operations with large
kernels that operations to compute local dependencies. Wang et al. [40]
proposed channel attention (CA) block and inserted it into the skip
connections between encoder and decoder to enhance performance on
medical image segmentation. Zhang et al. [41] introduced the Scale
Attention and the Axis Attention mechanisms, which are efficient to
capture essential information in global pooling.

To date, extensive segmentation methods based on 2D data have
been developed to improve the segmentation accuracy of liver and
tumors. Notwithstanding, most of the existing methods ignore the
multi-scale feature information and spatial channel information, which
results in relatively low segmentation accuracy. In this paper, we design
multi-scale attention units for accurate segmentation of liver edges by
capturing global feature information, and combine the ideas of spatial
attention mechanism and channel attention mechanism to enhance the
segmentation of small tumors.

3. Methodology

In this section, we describe the details of RMAU-Net, including
network architecture, Res-SE-Block, MAB module, and loss function.

3.1. RMAU-Net

The RMAU-Net architecture is shown in Fig. 1, which is improved
on the encoder–decoder architecture of U-Net. The original U-Net
based on encoder–decoder architecture uses four downsampling layers
to obtain high-dimensional information and utilizes four upsampling
layers to restore the feature map to the original size, then fuse the high-
level features and low-level features by four skip connections. But U-Net
can poorly capture multi-scale feature information and focus on more
important features. To solve these issue of U-Net, we modify its basic
deep learning neural network with PyTorch as the backend. Different
from two convolutional layers in U-Net, we develop Res-SE-Block which
consists of two 3 × 3 convolutional blocks, residual block, and squeeze-
excitation block to extract high-dimensional feature information. In
addition, we insert the MAB module at the end of the encoder and the
decoder respectively to increase the receptive fields of the network and
compensate for the loss of information by max pooling, and the MAB
module can capture multi-scale feature information and spatial-wise
and channel-wise dependencies of feature maps (see Fig. 5).

3.2. Res-SE-Block

Our proposed Res-SE-Block is built upon residual block and squeeze-
excitation block, as shown in Fig. 2. With the increase in the number
of network layers, CNNs will suffer from gradient disappearance and
gradient explosion, which cause CNNs to fail to converge. [16] designed
a novel skip connection termed residual connection to deal with the
problem. Inspired by residual connections, we incorporate residual
modules into our network. In the residual connection path, we use
1 × 1 Conv to control the number of output channels. Inspired by SE-
Net [37], we consider focusing on the importance of each channel in the
feature map through squeeze-excitation operation to solve the problem
of channel dependence.

In addition, to further prevent the gradient from vanishing, we use
Leaky ReLU as the activation function instead of ReLU. Because of the
zero slopes of the ReLU activation, the ReLU may stay in a state where
it can only output zero. We avoid this problem by using a leaky ReLU
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Fig. 2. The diagram of Res-SE-Block. Our proposed Res-SE-Block mainly consists of squeeze-excitation block, residual connection, convolution and Leaky ReLU.

Fig. 3. The overview of MAB. Our proposed MAB mainly consists of ASPP module, Channel Attention module, and Spatial Attention module. ASSP module can integrate multi-scale
features by atrous convolution with different dilated rates. The Channel module and Spatial module generate channel attention vectors and spatial attention vectors respectively.

Fig. 4. The diagram of the Channel module. The Channel module utilizes average-pooling and max-pooling to aggregate spatial information of a feature map and apply a shared
network with one hidden layer. Then, we get the channel attention map by merging the output feature vectors.

Fig. 5. The diagram of the Spatial module. The Spatial module aggregates channel information by using average-pooling and max-pooling. The outputs of two pooling operations
are concatenated and computed by a convolutional layer, producing a spatial attention map.
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rather than a ReLU. Batch normalization is also added to each block to
prevent over-fitting and improve the gradient flow and thus facilitate
the convergence of the network.

The squeeze operation is achieved by using global average pool-
ing to squeeze global spatial information into a channel descriptor.
Mathematically, the squeeze operation can be written as:

𝑧𝑐 = 𝐹𝑠𝑞(𝑢𝑐 ) =
1

𝐻 ×𝑊

𝐻
∑

𝑖=1

𝑊
∑

𝑗=1
𝑢𝑐 (𝑖, 𝑗), (1)

where 𝑧𝑐 refers to the data after squeeze operation, 𝐹𝑠𝑞 denotes the
squeeze function, 𝑢𝑐 refers to the input, 𝐻 refers to the height of the
feature map, 𝑊 refers to the width of the feature map.

The purpose of the excitation operation is to exploit the aggregated
information in the squeeze operation and fully capture channel-wise
dependencies through two fully connected (FC) layers. The first FC
layer reduces the channel dimension with the reduction ratio of r = 6
to limit the complexity of the network. The second FC layer restores the
dimension to the original dimension after applying the ReLU activation
function. Mathematically, the excitation operation can be written as:

𝑠 = 𝐹𝑒𝑥(𝑧,𝑊 ) = 𝜎
(

𝑊2𝛿
(

𝑊1𝑧
))

, (2)

where 𝑠 refers to the result after excitation operation, 𝐹𝑒𝑥 refers to the
excitation function, 𝜎 refers to the sigmoid function, 𝛿 refers to the
ReLU function, 𝑊1 ∈ 𝑅

𝐶
𝑟 ×𝐶 and 𝑊2 ∈ 𝑅𝐶× 𝐶

𝑟

The squeeze operation and excitation operation can enhance the
uality of representations by explicitly modeling the interdependencies
etween the channels of its convolutional features, it also allows the
etwork to perform feature recalibration through which it can learn
o use global information to selectively emphasize informative features
nd suppress less useful ones. The Res-SE-Block module can signifi-
antly improve the accuracy of the liver and tumor segmentation while
lightly increasing computation time and the complexity of the model.
n addition, it is easier to integrate into other networks compared with
ther attention mechanisms. Finally, the function of the Res-SE-Block
s represented as the following equation:

= 𝑥 + 𝑢 × 𝑠, (3)

where 𝑥 refers to the input of Res-SE-Block, 𝑦 refers to the output of
es-SE-Block.

.3. MAB

The MAB module takes advantage of ASPP [42] combined with
he attention mechanism module and is designed to exploit multi-scale
eature information and capture channel dependencies and spatial in-
ormation between pixels, as shown in Fig. 3. The idea for ASPP comes
rom the spatial pyramid pooling [43], which successfully resamples
eatures at multiple scales. ASPP module incorporates many parallel
trous convolutions with different dilated rates to capture contextual
nformation at different scales from feature maps. In addition, atrous
onvolution can control the receptive field of CNNs to accurately
apture multi-scale feature information [44]. Thanks to its multi-scale
xtraction function, the ASPP model shows satisfactory results on var-
ous segmentation tasks. Therefore, we use ASPP to capture useful
ulti-scale information in the liver and tumor segmentation task.

The attention mechanism module includes two attention modules,
he channel attention module and spatial attention module, which
ocus on ‘what’ and ‘where’ respectively by computing complementary
ttention, as shown in 4.

The channel attention module exploits the inter-channel relation-
hip of features and focuses on ‘what’ is meaningful. The first step is
o aggregate spatial information of the feature map, average-pooling
nd max-pooling operations are used to generate two different spatial
ontext features: 𝐹 𝑐

𝑎𝑣𝑔 and 𝐹 𝑐
𝑚𝑎𝑥. The two features are forwarded to a
5

hared network which is composed of a multi-layer perceptron (MLP)
to generate a channel attention map 𝑀𝑐 ∈ 𝑅𝐶×1×1. After applying the
shared network to each feature, the output feature vectors are merged
by using element-wise summation. In brief, the channel attention is
computed as:

𝑀𝑐 (𝐹 ) = 𝜎 (𝑀𝐿𝑃 (𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹 ))

+𝑀𝐿𝑃 (𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹 ))) ,
(4)

where 𝜎 denotes the sigmoid function, and 𝐹 is the input.
The spatial attention module utilizes the inter-spatial relationship

of features and focuses on ‘where’ is an informative part. As the same
as the channel attention, the first step is applying average-pooling
and max-pooling operations to generate a highlighting feature map
efficiently. And then we apply a convolution layer to produce a spatial
attention map 𝑀𝑠 ∈ 𝑅𝐶×1×1. In brief, the spatial attention is computed
as:

𝑀𝑠(𝐹 ) = 𝜎
(

𝑓 7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹 );𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹 )])
)

, (5)

where 𝜎 denotes the sigmoid function and 𝑓 7×7 represents a convolu-
tion layer with the kernel size of 7 × 7.

3.4. Loss function

The cross-entropy (CE) loss is one of the most widely used loss
functions for deep learning models. The loss function based on the dice
coefficient can alleviate the problem of imbalance between background
and foreground pixels. Therefore, most of the previous work optimizes
the network by combining the cross-entropy loss function and the dice
coefficient loss function in the model to obtain a weighted loss function.
Inspired by [45], considering the imbalance with the numbers of liver
and tumor in the task of liver and tumor segmentation, and the liver
and tumors are more complex and diverse, with the tumors having
a smaller and more blurred shape, we propose a novel loss function
combined with dice coefficient loss and the Focal loss [46] which
deal with the issue of class imbalance by reducing the weight the
contribution of easy examples and more focusing on harder examples.

The cross-entropy (CE) loss is defined as the following:

CE(𝑝, 𝑦) =
{

− log(𝑝), if 𝑦 = 1
− log(1 − 𝑝), if 𝑦 = 0

}

, (6)

where 𝑦 ∈ 0, 1 denotes the ground-truth class and 𝑝 ∈ [0, 1] refers to the
predict probability for the class with label 𝑦 = 1. Then, we define 𝑝𝑡 as:

𝑝𝑡 =
{

𝑝, if 𝑦 = 1
1 − 𝑝, if 𝑦 = 0

}

, (7)

and rewrite CE(𝑝, 𝑦) = CE(𝑝𝑡) = − log(𝑝𝑡).
We define the Focal loss(ℒF) as:

ℒF𝑝𝑡 = 𝛼𝑡
(

1 − 𝑝𝑡
)𝛾

⋅ ℒCE(𝑝,𝑦), (8)

where 𝛼𝑡 controls the weights of the class, 𝛾 denotes the weight of easy
samples.

The dice loss function can be written as:

ℒ𝑑𝑖𝑐𝑒 = 1 −
2 ×

∑𝑁
𝑖=1 𝑝𝑖𝑦𝑖

∑𝑁
𝑖=1 𝑝𝑖2 +

∑𝑁
𝑖=1 𝑦𝑖2

, (9)

where 𝑁 indicates the number of all predicted voxels. 𝑝𝑖 represents the
predict probability that the voxel 𝑖, 𝑦𝑖 denotes the voxel 𝑖 in the ground
truth.

In this study, the final loss function of the proposed method is shown
as:

ℒ𝑡𝑜𝑡𝑎𝑙 = 𝛼ℒ𝐹 + 𝛽ℒ𝑑𝑖𝑐𝑒, (10)

where 𝛼 and 𝛽 are to control the weight of Focal loss and Dice loss. In
this study, 𝛼 = 0.5 and 𝛽 = 1.
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Table 1
The quantitative comparison of preprocessing based on LiTS dataset. (Without data augmentation).

Model Liver Tumor

DSC VOE RVD DSC VOE RVD

U-Net (Without Pre) 0.8950 ± 0.026 0.1569 ± 0.039 0.1313 ± 0.368 0.5553 ± 0.068 0.5822 ± 0.058 0.8517 ± 0.417
U-Net (With Pre) 0.9168 ± 0.010 0.1371 ± 0.019 −0.1028 ± 0.021 0.6063 ± 0.060 0.5348 ± 0.055 −0.1631 ± 0.593
Ours (Without Pre) 0.9497 ± 0.012 0.0874 ± 0.008 −0.0083 ± 0.012 0.7547 ± 0.053 0.3940 ± 0.055 −0.0449 ± 0.764
Ours (With Pre) 0.9521 ± 0.010 0.0826 ± 0.007 −0.0057 ± 0.073 0.7594 ± 0.075 0.3837 ± 0.072 −0.0235 ± 0.393

Note. Pre means preprocessing.
Table 2
The quantitative comparison of data augmentation based on LiTS dataset. (With preprocessing).

Model Liver Tumor

DSC VOE RVD DSC VOE RVD

U-Net (Without Aug) 0.9168 ± 0.010 0.1371 ± 0.019 −0.1028 ± 0.021 0.6063 ± 0.060 0.5348 ± 0.055 −0.1631 ± 0.593
U-Net (With Aug) 0.9221 ± 0.027 0.1270 ± 0.047 −0.0725 ± 0.047 0.6252 ± 0.148 0.5209 ± 0.159 0.0946 ± 0.437
Ours (Without Aug) 0.9521 ± 0.010 0.0826 ± 0.007 −0.0057 ± 0.073 0.7594 ± 0.075 0.3837 ± 0.072 −0.0235 ± 0.393
Ours (With Aug) 0.9552 ± 0.012 0.0792 ± 0.023 −0.0042 ± 0.026 0.7616 ± 0.118 0.3709 ± 0.135 0.0118 ± 0.291

Note. Aug means Augmentation.
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xperimental hardware and software configuration.
Environment Configuration Information

GPU RTX3090
Memory 64G
Operating system Ubuntu 18.04
Hard disk 4TB
Programming Software PyTorch 1.7; Python 3.7

. Experiments AND results

.1. Datasets

.1.1. LiTS
The LiTS dataset is the public dataset that comes from the Liver

umor segmentation challenge held by ISBI 2017 and MICCAI 2017,
nd is currently the most commonly used dataset for liver and tumor
egmentation studies. The LiTS dataset consists of a training set of 131
T scans and a test set of 70 CT scans. The number of CT slices included

n each scan ranged from 42 to 1026, with an axial plane resolution of
12 × 512 pixels and slice spacing ranging from 0.45 mm to 6.0 mm.
he training data set was manually labeled by four radiologists at six
linical sites around the world, while the test set was not labeled.
he uniqueness of the data source makes it difficult to segment tumor
sing this dataset due to the significant variation in reconstructed layer
hickness, slice thickness, storage orientation of scanned images, image
uality, and spatial resolution. However, due to its relatively large
umber and high image quality, it is still the most widely used dataset
or liver and tumor segmentation.

.1.2. 3D-IRCADb
The 3D Image Reconstruction for Comparison of Algorithm

atabase (3D-IRCADb) is a publicly available dataset that has been used
xtensively in related research. This dataset provides more complex
ata on the liver and its tumors, including medical images of anony-
ous patients and images of the region of interest manually segmented

y clinical experts. The 3D-IRCADb-01 consists of enhanced CT scans of
0 women and 10 men, 75% of women had liver tumors, while the 3D-
RCADb-02 consists of 2 anonymous enhanced 3D CT scans of the chest
nd abdomen. The resolution of this dataset is also 512 × 512 pixels,
ut some of the livers and tumors in the dataset have low contrast, and
he liver and tumor areas almost overlap, which may affect the model
raining to some extent, and thus the segmentation results.
6

c

able 4
raining hyperparameters of the proposed method.
Hyperparameters Setting

Learning rate 0.0001
Batch_size 8
Epoch 250
Optimizer Adam

Fig. 6. The comparison of the original and processed images.

.2. Preprocessing and augmentation

In this paper, we train, test our proposed model on the LiTS dataset,
nd evaluate its generalization ability on the 3D-IRCADb dataset. As for
he LiTS dataset, in general, data splitting is randomly performed based
n the training set, since image labels of the test set are not publicly
vailable. In this work, we used volumes 0–26 of the training set as
he test subset and volumes 27–130 as the training subset, which can
acilitate readers to reproduce our method and experimental results.
nd we obtained 19,080 2D images by slicing 131 volumes, which

ncludes 11,893 normal images and 7187 cancer images. In order to
ake the CT slices beneficial for network training, the raw liver CT

mages need to be preprocessed by using windowing techniques [9,17].
or preprocessing of the dataset, windows were opened in the range of
ounsfield’s unit value [−200, 200] to remove other irrelevant tissues
nd enhance the contrast between the liver and other tissues, then
he voxel values were normalized to [−1, 1]. Finally, the images are
ormalized before being processed. Fig. 6 shows a comparison between
he original CT slice and the preprocessed CT slice. It can be seen
hat the area of the liver is more visible and has a clearer texture and
ontour after preprocessing. In addition, we accomplish a comparative
xperiment on the effectiveness of the preprocessing methods. The
esult is shown in Table 1.

The original CT images are 512 × 512 pixels in size and have been
ropped to 256 × 256 pixels to accelerate the training of the network
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Table 5
Ablation analysis for the proposed method on LiTS dataset.
Model Liver Tumor

DSC VOE RVD DSC VOE RVD

U-Net(backbone) 0.9221 ± 0.027 0.1270 ± 0.047 −0.0725 ± 0.047 0.6252 ± 0.148 0.5209 ± 0.159 0.0946 ± 0.437
U-Net+Res-SE-Block 0.9394 ± 0.016 0.1116 ± 0.029 −0.0444 ± 0.035 0.6906 ± 0.155 0.4578 ± 0.158 −0.0277 ± 0.240
U-Net+MAB 0.9472 ± 0.032 0.0981 ± 0.048 0.0164 ± 0.048 0.7257 ± 0.139 0.4140 ± 0.154 −0.1126 ± 0.102
RMAU-Net 0.9552 ± 0.012 0.0792 ± 0.023 −0.0042 ± 0.026 0.7616 ± 0.118 0.3709 ± 0.135 0.0118 ± 0.291
Table 6
Ablation analysis for Loss function based on RMAU-Net on LiTS dataset.
LOSS FUNCTION Liver Tumor

DSC VOE RVD DSC VOE RVD

CE loss 0.9471 ± 0.011 0.0872 ± 0.023 0.0075 ± 0.038 0.7415 ± 0.149 0.4008 ± 0.154 −0.1081 ± 0.216
CE loss + dice loss 0.9526 ± 0.014 0.0864 ± 0.025 −0.0058 ± 0.032 0.7494 ± 0.178 0.3892 ± 0.177 −0.0996 ± 0.239
Proposed loss 0.9552 ± 0.012 0.0792 ± 0.023 −0.0042 ± 0.026 0.7616 ± 0.118 0.3709 ± 0.135 0.0118 ± 0.291
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and reduce the region of the background. The role of data augmentation
is to increase the generalization ability and robustness of the model and
to avoid model overfitting. We augmented data by using the tool named
Transforms of the PyTorch deep learning framework following the
other methods [26,27]. The data augmentation methods used include:
(1) scaling the image between 0.8 and 1.2 with a 50% probability,
(2) rotating the image between 0 degrees and 30 degrees with a 30%
probability, (3) horizontal and vertical flipping with a 30% probability.
In addition, we test the effectiveness of the data augmentation methods
on the backbone(U-Net) and our proposed model. The results are
shown in Table 2. The experimental results demonstrate that the data
augmentation method can improve the performance of the model by
increasing the diversity of samples.

4.3. Experimental environment and parameters

The experimental hardware and software configuration for this
study are shown in Table 3. The settings of training hyperparameters
are shown in Table 4.

4.4. Evaluation metrics

The common evaluation metrics for liver and tumor segmenta-
tion include Dice similarity coefficient (DSC), volume overlap error
(VOE), and relative volume difference (RVD). If A denotes the ground
truth(GT) and B denotes the predicted results(PR), the relevant evalu-
ation metrics are as follows:

(1) DSC: the most common evaluation metric for image segmenta-
tion and represents the overlapping similarity between GT and
PR. The calculation formula is as follows:

DSC(𝐴,𝐵) =
2|𝐴 ∩ 𝐵|
|𝐴| + |𝐵|

. (11)

(2) VOE: similar to the DSC and is the ratio between intersection
and union between segmentation results and markers. The VOE
is the error rate of the segmentation, which is in the range of 0
to 1. The calculation formula is as follows:

VOE(𝐴,𝐵) = 1 −
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

. (12)

(3) RCD: used to express the relative difference in volume between
GT and PR. The formula is as follows:

RVD(𝐴,𝐵) =
|𝐵| − |𝐴|

. (13)
7

|𝐴| d
.5. Ablation analysis

To evaluate the effectiveness of our proposed RMAU-Net for liver
nd tumor segmentation, we conduct comprehensive experiments with
blation analysis. We present the Res-SE-Block instead of all the orig-
nal two convolution layers based on U-Net and add the MAB module
fter the encoder and decoder respectively. We mainly evaluate the
ffectiveness of the Res-SE-Block and the MAB module. The result of
blation analysis for RMAU-Net is shown in Table 5. It demonstrates
hat the Res-SE-Block and the MAB module are effective to improve the
egmentation performance, and the MAB gets a greater segmentation
ffect than Res-SE-Block. Then to evaluate the effectiveness of the
roposed loss function, we train the RMAU-Net with CE loss, CE loss
dice loss, and the proposed loss respectively. The result of ablation

nalysis for loss function is shown in Table 6. It demonstrates that the
roposed loss function is also beneficial to enhance the performance of
he liver and tumor segmentation.

.6. Comparison of models

In this section, we compare the proposed RMAU-Net with five state-
f-the-art approaches to evaluate the effectiveness and robustness of
MAU-Net on the LiTS dataset and 3D-IRCADb dataset. In the medical

mage segmentation tasks, U-Net [11] is the most classic network of
ncoder–decoder architecture with skip connections. U-Net++ [14]
dds a series of nested, dense skip connections based on U-net to reduce
he semantic gap between the feature maps. RA-UNet [25] introduces
he attention residual mechanism to improve the performance of U-Net.
SU-Net++ [26] introduces the adaptive feature extractions for liver
nd tumor segmentation. SAA-Net [27] proposes the Scale Attention
echanism based on U-Net. HFRU-Net [15] modifies skip paths by

pplying feature fusion mechanism and local feature reconstruction to
mprove U-Net. The results of the comparison of six methods on the
iTS dataset are shown in Table 7. The result demonstrates that the
roposed RMAU-Net achieved better performance than the other meth-
ds. The proposed method achieves 0.9522 (DSC) and 0.7616 (DSC) on
iver and tumor segmentation by measuring dice values respectively.
n addition, we show six CT slices that contain the liver and tumor to
isualize the segmentation results. The visual comparison of the output
f different models is shown in Fig. 7. We can see that U-Net does not
ork well in liver and tumor segmentation, and our proposed RMAU-
et obtains better performance on both liver segmentation and tumor

egmentation. To evaluate the validity and robustness of our proposed
MAU-Net, we also conducted experiments on the 3D-IRCADb dataset.
he result of comparison and visual comparison on the 3D-IRCADb

ataset is shown in Table 8 and Fig. 8 respectively. We can see that



Computers in Biology and Medicine 158 (2023) 106838L. Jiang et al.
Table 7
The quantitative comparison of different methods on LiTS dataset (27 test volumes).
Model Liver Tumor

DSC VOE RVD DSC VOE RVD

U-Net [11] 0.9221 ± 0.027 0.1270 ± 0.047 −0.0725 ± 0.047 0.6252 ± 0.148 0.5209 ± 0.159 0.0946 ± 0.437
U-Net++[14] 0.9399 ± 0.026 0.1092 ± 0.045 0.0220 ± 0.058 0.6903 ± 0.137 0.4629 ± 0.150 0.2334 ± 0.661
RA-UNet [25] 0.9450 ± 0.018 0.0992 ± 0.037 0.0152 ± 0.037 0.7021 ± 0.135 0.4427 ± 0.145 0.1370 ± 0.431
ASU-Net [26] 0.9494 ± 0.012 0.0915 ± 0.021 0.0129 ± 0.029 0.7198 ± 0.133 0.4311 ± 0.142 −0.2661 ± 0.179
SAA-Net [27] 0.9538 ± 0.014 0.0861 ± 0.025 0.0136 ± 0.029 0.7312 ± 0.133 0.4088 ± 0.142 −0.2218 ± 0.179
HFRU-Net [15] 0.9503 ± 0.014 0.0911 ± 0.025 −0.0141 ± 0.032 0.7494 ± 0.107 0.3802 ± 0.128 −0.2181 ± 0.152
RMAU-Net 0.9552 ± 0.012 0.0792 ± 0.023 −0.0042 ± 0.026 0.7616 ± 0.118 0.3709 ± 0.135 0.0118 ± 0.291
Table 8
The quantitative comparison of different methods on 3D-IRCADb dataset.
Model Liver Tumor

DSC VOE RVD DSC VOE RVD

U-Net [11] 0.9458 ± 0.013 0.0743 ± 0.023 −0.0081 ± 0.024 0.5063 ± 0.153 0.6201 ± 0.139 1.6562 ± 1.246
U-Net++[14] 0.9647 ± 0.022 0.0627 ± 0.039 0.0102 ± 0.052 0.6145 ± 0.140 0.5145 ± 0.153 1.0971 ± 0.864
RA-UNet [25] 0.9527 ± 0.011 0.0823 ± 0.030 0.0063 ± 0.027 0.7027 ± 0.131 0.4125 ± 0.161 −0.0461 ± 0.135
ASU-Net [26] 0.9535 ± 0.022 0.0840 ± 0.038 0.0035 ± 0.036 0.7354 ± 0.142 0.3914 ± 0.169 −0.0440 ± 0.255
SAA-Net [27] 0.9552 ± 0.016 0.0814 ± 0.028 0.0293 ± 0.035 0.6782 ± 0.149 0.4595 ± 0.164 0.1145 ± 0.338
HFRU-Net [15] 0.9594 ± 0.013 0.0742 ± 0.023 −0.0029 ± 0.031 0.7894 ± 0.111 0.3257 ± 0.142 0.0327 ± 0.170
RMAU-Net 0.9697 ± 0.008 0.0531 ± 0.014 0.0011 ± 0.019 0.8307 ± 0.095 0.2751 ± 0.125 0.1258 ± 0.186
Fig. 7. The visual comparison of the output of different models on LiTS dataset. The red region refers to the livers and the green region refers to the lesions.
our proposed method still outperforms the other methods on the 3D-
IRCADb dataset. In addition, We used the t-test method to calculate
the 𝑝-value on DSC to evaluate the statistical significance. The results
in Tables 9 and 10 prove that RMAU-Net has a statistically significant
improvement in DSC (all 𝑝-value < 0.01). The experimental comparison
validated the superiority of our proposed method in comparison with
other methods.
8

In addition, we conducted a 5-fold cross-validation on both LiTS
and 3D-IRCADb to test if there is any bias toward the training data
resulting from the fixed test data. Specifically, in line with the 5-fold
cross-validation rules, each dataset is evenly divided into five groups
where at each time, one group of the data is selected exclusively and
used as the test data, and the remaining four groups of data are used
for training the model. This procedure is repeated five times until each
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Fig. 8. The visual comparison of the output of different models on 3D-IRCADb dataset. The red region refers to the livers and the green region refers to the lesions.
Table 9
Statistical analysis for t-test method on LiTS dataset.

Model Liver Tumor

DSC p-value (DSC) DSC p-value (DSC)

U-Net [11] 0.9221 ± 0.027 1.16 × 10−20 0.6252 ± 0.148 5.54 × 10−16

U-Net++[14] 0.9399 ± 0.026 7.15 × 10−12 0.6903 ± 0.137 9.21 × 10−12

RA-UNet [25] 0.9450 ± 0.018 2.16 × 10−8 0.7021 ± 0.135 3.52 × 10−10

ASU-Net [26] 0.9494 ± 0.012 1.23 × 10−6 0.7198 ± 0.133 7.81 × 10−9

SAA-Net [27] 0.9538 ± 0.014 1.78 × 10−3 0.7312 ± 0.133 6.93 × 10−7

HFRU-Net [15] 0.9503 ± 0.014 2.52 × 10−4 0.7494 ± 0.107 3.25 × 10−6

RMAU-Net 0.9552 ± 0.012 0.7616 ± 0.118

Table 10
Statistical analysis for t-test method on 3D-IRCADb dataset.

Model Liver Tumor

DSC p-value (DSC) DSC p-value (DSC)

U-Net [11] 0.9458 ± 0.013 8.41 × 10−16 0.5063 ± 0.153 4.94 × 10−26

U-Net++ [14] 0.9647 ± 0.022 5.07 × 10−3 0.6145 ± 0.140 1.56 × 10−20

RA-UNet [25] 0.9527 ± 0.011 1.21 × 10−8 0.7027 ± 0.131 3.51 × 10−12

ASU-Net [26] 0.9535 ± 0.022 2.13 × 10−8 0.7354 ± 0.142 9.21 × 10−8

SAA-Net [27] 0.9552 ± 0.016 9.04 × 10−6 0.6782 ± 0.149 3.03 × 10−16

HFRU-Net [15] 0.9594 ± 0.013 2.31 × 10−4 0.7894 ± 0.111 7.69 × 10−5

RMAU-Net 0.9697 ± 0.008 0.8307 ± 0.095

group has been used as the test data. Finally, the mean value obtained
from the five iterations is employed to evaluate the proposed model.

The experimental results of the 5-fold cross-validation with RMAU-
net on the LiTS and 3D-IRCADb datasets are shown in Table 11.
Moreover, the cross-validation results performed on the datasets are
shown in Table 12 and Table 13, respectively. The experimental results
9

of the cross-validation demonstrate good stability of the developed
model and do not show significant bias toward the training set.

5. Discussion

Automatic liver and tumor segmentation assist radiologists and
diagnosis in clinical practice. In this paper, we propose RMAU-Net
for liver and tumor segmentation, which is based on improved U-
Net. We introduce multi-scale feature information extraction and an
attention mechanism in the proposed method, which contains Res-SE-
Block and MAB modules. The Res-SE-Block can enhance the quality
of representations and perform feature recalibration by combining
residual connection and squeeze-and-extraction operation. The MAB
module can infuse multi-scale feature information and exploit the inter-
channel and inter-spatial relationship of features that both benefit liver
and tumor segmentation.

To evaluate the effectiveness and robustness of our proposed ap-
proaches, we conduct comprehensive experiments with ablation analy-
sis. According to the results of the ablation analysis, the Res-SE-Block,
the MAB module, and the proposed loss function are effective for liver
and tumor segmentation.

To further demonstrate the superiority of our proposed approaches,
we compare RMAU-Net with other state-of-the-art methods. Table 2
shows the results compared to the other methods. We can see that our
proposed method outperforms other methods on segmentation perfor-
mance. The proposed method achieves 0.9522 (DSC) and 0.7616 (DSC)
on liver and tumor segmentation by measuring dice values respectively.
In addition, we list some visual presentations of the liver and tumor
segmentation results, as shown in Fig. 7.
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Table 11
The results of five-fold cross-validation experiments with RMAU-Net on LiTS and 3D-IRCADb dataset.
Model Liver Tumor

DSC VOE RVD DSC VOE RVD

LiTS 0.9563 0.0788 −0.0037 0.7623 0.3700 0.0109
0.9556 0.0784 −0.0030 0.7629 0.3691 0.0113
0.9566 0.0788 −0.0038 0.7621 0.3702 0.0103
0.9564 0.0790 −0.0037 0.7622 0.3709 0.0111
0.9564 0.0789 −0.0037 0.7620 0.3694 0.0104

mean 0.9563 ± 0.001 0.0788 ± 0.001 −0.0036 ± 0.001 0.7623 ± 0.001 0.3699 ± 0.001 0.0108 ± 0.001

3D-IRCADb 0.9703 0.0510 0.0014 0.8304 0.2743 0.1253
0.9702 0.0523 0.0012 0.8305 0.2742 0.1255
0.9703 0.0529 0.0014 0.8307 0.2744 0.1254
0.9707 0.0520 0.0011 0.8304 0.2746 0.1258
0.9701 0.0504 0.0012 0.8306 0.2747 0.1253

mean 0.9703 ± 0.001 0.0517 ± 0.001 0.0013 ± 0.001 0.8305 ± 0.001 0.2744 ± 0.001 0.1255 ± 0.001
Table 12
The results of cross-validation experiments on LiTS dataset.
Model Liver Tumor

DSC VOE RVD DSC VOE RVD

U-Net [11] 0.9308 ±0.005 0.1219 ±0.002 −0.0417 ± 0.015 0.6627 ± 0.015 0.4734 ± 0.009 0.1305 ± 0.029
U-Net++ [14] 0.9419 ± 0.001 0.1061 ± 0.002 0.0194 ± 0.001 0.6948 ± 0.004 0.4525 ± 0.003 0.1462 ± 0.007
RA-UNet [25] 0.9477 ± 0.001 0.0962 ± 0.001 0.0141 ± 0.001 0.7138 ± 0.002 0.4374 ± 0.003 0.2178 ± 0.038
ASU-Net [26] 0.9513 ± 0.001 0.0881 ± 0.001 0.0132 ± 0.001 0.7265 ± 0.004 0.4236 ± 0.005 −0.2404 ± 0.013
SAA-Net [27] 0.9518 ± 0.001 0.0879 ± 0.001 0.0139 ± 0.001 0.7411 ± 0.007 0.3909 ± 0.012 −0.2202 ± 0.001
HFRU-Net [15] 0.9525 ± 0.001 0.0876 ± 0.003 −0.0083 ± 0.003 0.7556 ± 0.004 0.3738 ± 0.001 −0.1374 ± 0.049
RMAU-Net 0.9563 ± 0.001 0.0788 ± 0.001 −0.0036 ± 0.001 0.7623 ± 0.001 0.3699 ± 0.001 0.0108 ± 0.001
Table 13
The results of cross-validation experiments on 3D-IRCADb dataset.
Model Liver Tumor

DSC VOE RVD DSC VOE RVD

U-Net [11] 0.9567 ± 0.006 0.0704 ± 0.002 −0.0090 ± 0.001 0.5625 ± 0.033 0.5899 ± 0.017 1.4120 ± 0.138
U-Net++[14] 0.9596 ± 0.004 0.0742 ± 0.006 0.0095 ± 0.001 0.6665 ± 0.028 0.4635 ± 0.033 0.4605 ± 0.191
RA-UNet [25] 0.9532 ± 0.001 0.0828 ± 0.001 0.0045 ± 0.001 0.7228 ± 0.010 0.4021 ± 0.007 −0.0446 ± 0.001
ASU-Net [26] 0.9542 ± 0.001 0.0822 ± 0.001 0.0174 ± 0.010 0.7026 ± 0.012 0.4359 ± 0.011 −0.0828 ± 0.011
SAA-Net [27] 0.9575 ± 0.001 0.0776 ± 0.001 0.0138 ± 0.004 0.7299 ± 0.023 0.3831 ± 0.039 0.0906 ± 0.013
HFRU-Net [15] 0.9653 ± 0.003 0.0646 ± 0.007 −0.0016 ± 0.001 0.8134 ± 0.007 0.3040 ± 0.009 0.0884 ± 0.032
RMAU-Net 0.9703 ± 0.001 0.0517 ± 0.001 0.0013 ± 0.001 0.8305 ± 0.001 0.2744 ± 0.001 0.1255 ± 0.001
To demonstrate the generalization ability of our proposed RAMU-
et in clinical practice, we test RMAU-Net training on the LiTS dataset
n the 3D-IRCADb dataset and achieve state-of-the-art results for liver
nd tumor segmentation, with 0.9697 and 0.8307 on DSC respectively.
he results on the 3D-IRACDb dataset also demonstrate that our ap-
roach is not simply overtrained, but can be effectively generalized to
ifferent datasets under different data collection conditions.

Our proposed method mainly uses a multi-scale fusion attention
echanism to segment small tumors and fuzzy livers. Although our
roposed RMAU-Net framework yielded encouraging results, it is lim-
ted when dealing with discontinuous livers and marginal tumors, as
ontextual semantic information has not been taken into account. In the
uture work, we would like to explore solutions to capture contextual
emantic information in CT images for segmenting discontinuous livers
nd marginal tumors.

. Conclusion and future works

In this study, we proposed RMAU-Net for liver and tumor segmenta-
ion. We introduce an effective module named Res-SE-Block to capture
mportant feature information of images. Specially, we design a novel
odule named MAB which can capture multi-scale feature information

nd exploit inter-channel and inter-spatial dependencies simultane-
usly. In addition, we propose a loss function that combines the Focal
oss and dice loss. To evaluate the performance of the proposed method,
e conducted experiments on LiTS and 3D-IRCADb datasets. The re-
10

ults show that RMAU-Net achieves good performance on DSC (0.9552)
and DSC (0.9697) for liver segmentation and DSC (0.7616) and DSC
(0.8307) for liver tumor segmentation on LiTS and 3D-IRCADb dataset,
which surpassed the performance of other state-of-the-art methods for
liver and tumor segmentation.

In this study, we mainly focus on the problem of the multi-scale
problem and attention mechanism in the liver and tumor segmentation
task, but do not consider about the 3D information of CT images,
which is also critical for medical image segmentation. We will consider
improving the performance of RMAU-Net by adding 3D information on
CT images in future studies.
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